Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(37): 24154, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984738

RESUMO

[This corrects the article DOI: 10.1021/acsomega.9b04037.].

2.
ACS Omega ; 5(7): 3607-3611, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118176

RESUMO

Bedaquiline (BDQ) is the most critical pharmaceutical in the world for treating multidrug-resistant Mycobacterium tuberculosis. Despite it being highly effective, BDQ asymmetric synthesis remains a challenge. Herein, the influence of chiral bases, namely, bis(1-phenylethyl)amine, bisoxazoline, and sparteine on the diastereoselective lithiation reaction to obtain BDQ was investigated. The highest diastereoselective ratio (dr) emerged as 90:10 from the (+)-bis[(R)-1-phenylethyl] lithium amide. This is a significant improvement from the 50:50 dr achieved from the commercial synthesis. Thereafter, the desired (90:10 RS, SR) diastereomeric mixture was easily isolated via a gravity column and subjected to chiral supercritical fluid chromatography (SFC) to access the desired enantiomer (1R, 2S)-BDQ. The advantages of this procedure are enhanced diastereoselection as well as a greener, faster way to achieve excellent enantioseparation (up to 1.0 g scale).

3.
RSC Adv ; 8(22): 11902-11907, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539382

RESUMO

Bedaquiline (BDQ) is the first-in-class United States Food and Drug Administration (US FDA) approved anti-tuberculosis (anti-TB) drug, which is a novel diarylquinoline antibiotic that has recently been utilized as an effective adjunct to existing therapies for multidrug-resistant tuberculosis (MDR-TB). BDQ is especially promising due to its novel mechanism of action, activity against drug-sensitive and drug-resistant tuberculosis (TB) in addition to having the potential to shorten treatment duration. Drug delivery to the central nervous system (CNS) is a major concern in TB chemotherapy, especially with the increasing cases of CNS-TB. In this study, we investigated the CNS penetration of BDQ in healthy rodent brain. Male Sprague-Dawley rats (n = 27; 100 ± 20 g) received a single 25 mg kg-1 b.w dose of BDQ via intraperitoneal (i.p.) administration, over a 24 h period. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine whole tissue drug concentrations and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was utilized to evaluate drug distribution in the brain. BDQ reached peak concentrations (C max) of 134.97 ng mL-1 in the brain at a T max of 4 h, which is within the range required for therapeutic efficacy. BDQ was widely distributed in the brain, with a particularly high intensity in the corpus callosum and associated subcortical white matter including the striatal, globus pallidus, corticofugal pathways, ventricular system, basal forebrain region and hippocampal regions. Using MALDI MSI, this study demonstrates that due to BDQ's distribution in the brain, it has the potential to target TB reservoirs within this organ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...